These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of type I and type II tumor necrosis factor (TNF) receptors in the ability of TNF-alpha to transduce a proliferative signal in the human megakaryoblastic leukemic cell line Mo7e.
    Author: Liu RY, Fan C, Mitchell S, Chen Q, Wu J, Zuckerman KS.
    Journal: Cancer Res; 1998 May 15; 58(10):2217-23. PubMed ID: 9605769.
    Abstract:
    We investigated the effects of tumor necrosis factor (TNF) alpha on the human megakaryocytic leukemic cell lines Mo7e, Meg-01, and Dami/HEL. Our data show that both type I and type II TNF receptors (TNF-RI and TNF-RII) are expressed on all of these cells, and TNF-alpha significantly stimulates the proliferation of growth factor-dependent Mo7e cells but not of Meg-01 or Dami/HEL cells, which grow in a factor-independent manner. TNF-alpha serves predominantly as a mitogen for Mo7e cell proliferation and does not induce Mo7e cell differentiation. Coincubation with both TNF-alpha and anti-TNF-alpha neutralizing antibody completely abolishes the TNF-alpha-induced proliferation of Mo7e cells. In bioassays, there is no detectable level of other stimulatory cytokines in conditioned medium from Mo7e cells previously stimulated by TNF-alpha, implying that the stimulatory effect of TNF-alpha on Mo7e cells is derived from the direct action of TNF-alpha rather than via the induction of secondary cytokines by TNF-alpha. Flow cytometric studies demonstrated that TNF-alpha binds to Mo7e cells that have been pretreated with either anti-TNF-RI or anti-TNF-RII neutralizing antibody, but TNF-alpha does not bind to cells pre-exposed to both receptor antibodies. However, the incubation of Mo7e cells with either TNF-RI or TNF-RII neutralizing antibodies or with either soluble TNF-RI or TNF-RII inhibits TNF-alpha-induced cell proliferation, indicating the requirement of interactions with both TNF receptors for the mitogenic activity of TNF-alpha. Furthermore, our data suggest that an alternative signaling pathway may be involved in TNF-alpha-induced Mo7e cell proliferation, because the common mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) signaling pathways activated by other cytokines that induce Mo7e cell proliferation are not activated by TNF-alpha.
    [Abstract] [Full Text] [Related] [New Search]