These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein phosphatase-1 and insulin action.
    Author: Ragolia L, Begum N.
    Journal: Mol Cell Biochem; 1998 May; 182(1-2):49-58. PubMed ID: 9609113.
    Abstract:
    Protein Phosphatase-1 (PP-1) appears to be the key component of the insulin signalling pathway which is responsible for bridging the initial insulin-simulated phosphorylation cascade with the ultimate dephosphorylation of insulin sensitive substrates. Dephosphorylations catalyzed by PP-1 activate glycogen synthase (GS) and simultaneously inactivate phosphorylase a and phosphorylase kinase promoting glycogen synthesis. Our in vivo studies using L6 rat skeletal muscle cells and freshly isolated adipocytes indicate that insulin stimulates PP-1 by increasing the phosphorylation status of its regulatory subunit (PP-1G). PP-1 activation is accompanied by an inactivation of Protein Phosphatase-2A (PP-2A) activity. To gain insight into the upstream kinases that mediate insulin-stimulated PP-1G phosphorylation, we employed inhibitors of the ras/MAPK, PI3-kinase, and PKC signalling pathways. These inhibitor studies suggest that PP-1G phosphorylation is mediated via a complex, cell type specific mechanism involving PI3-kinase/PKC/PKB and/or the ras/MAP kinase/Rsk kinase cascade. cAMP agonists such as SpcAMP (via PKA) and TNF-alpha (recently identified as endogenous inhibitor of insulin action via ceramide) block insulin-stimulated PP-1G phosphorylation with a parallel decrease of PP-1 activity, presumably due to the dissociation of the PP-1 catalytic subunit from the regulatory G-subunit. It appears that any agent or condition which interferes with the insulin-induced phosphorylation and activation of PP-1, will decrease the magnitude of insulin's effect on downstream metabolic processes. Therefore, regulation of the PP-1G subunit by site-specific phosphorylation plays an important role in insulin signal transduction in target cells. Mechanistic and functional studies with cell lines expressing PP-1G subunit site-specific mutations will help clarify the exact role and regulation of PP-1G site-specific phosphorylations on PP-1 catalytic function.
    [Abstract] [Full Text] [Related] [New Search]