These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Levamisole inhibits intestinal Cl- secretion via basolateral K+ channel blockade.
    Author: Mun EC, Mayol JM, Riegler M, O'Brien TC, Farokhzad OC, Song JC, Pothoulakis C, Hrnjez BJ, Matthews JB.
    Journal: Gastroenterology; 1998 Jun; 114(6):1257-67. PubMed ID: 9609763.
    Abstract:
    BACKGROUND & AIMS: Phenylimidazothiazoles have recently been shown to activate wild-type and mutant cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels in transfected cells and were proposed as therapy for cystic fibrosis. The aim of this study was to investigate the effects of phenylimidazothiazoles on regulated transepithelial Cl- transport in intact epithelia. METHODS: T84 intestinal epithelial cells grown on permeable supports and stripped human colonic mucosal sheets were studied by conventional current-voltage clamping. Selective permeabilization of apical or basolateral membranes with the monovalent ionophore nystatin was used to isolate basolateral K+ and apical Cl- channel activity, respectively. 86Rb+ uptake was assessed for Na/K/2Cl cotransporter and Na+,K(+)-adenosine triphosphatase activity. RESULTS: In T84 monolayers and human colon, levamisole and its brominated derivative bromotetramisole failed to activate transepithelial secretion. In fact, these compounds dose-dependently inhibited secretory responses to the cyclic adenosine monophosphate agonist forskolin and the Ca2+ agonist carbachol. In permeabilized T84 monolayers, phenylimidazothiazoles weakly activated apical Cl- currents (consistent with their reported action on CFTR) and did not affect bumetanide-sensitive or bumetanide-insensitive 86+Rb+ uptake. Instead, they profoundly inhibited the basolateral Ba(2+)-sensitive and Ba(2+)-insensitive K+ currents. CONCLUSIONS: Phenylimidazothiazoles block K+ channels required for Cl(-)-secretory responses elicited by diverse pathways in model epithelia and native colon, an effect that outweighs their ability to activate apical Cl- channels.
    [Abstract] [Full Text] [Related] [New Search]