These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Supraspinal flumazenil inhibits the antianalgesic action of spinal dynorphin A (1-17).
    Author: Rady JJ, Holmes BB, Fujimoto JM.
    Journal: Pharmacol Biochem Behav; 1998 May; 60(1):245-54. PubMed ID: 9610949.
    Abstract:
    DynorphinA (Dyn) administered intrathecally or released spinally in mice produces antianalgesia, that is, antagonizes morphine analgesia (tail-flick test). Spinal transection eliminates this Dyn antianalgesia. Present results in mice show that intracerebroventricular administration of flumazenil, a benzodiazepine receptor antagonist, also eliminated the antianalgesic action of Dyn; flumazenil in the brain eliminated the suppressant effect of intrathecal Dyn on intrathecal and intracerebroventricular morphine-induced antinociception. Intracerebroventricular clonidine, naloxone, and norbinaltorphimine release spinal Dyn. The latent antinociceptive actions of these compounds were uncovered by intracerebroventricular flumazenil. Thus, Dyn, given intrathecally or released spinally, activates a pathway that is inhibited by intracerebroventricular flumazenil. Dyn antianalgesia is not significantly altered by intracerebroventricular administration of bicuculline and picrotoxin, suggesting that activation of the gamma-aminobutyric acid receptor has little if any involvement in the antianalgesic action of Dyn. The antagonistic effect of Dyn seems to be mimicked by benzodiazepine agonists. Furthermore, administration of a benzodiazepine receptor inverse agonist (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) inhibited Dyn antianalgesia as did flumazenil. Thus, flumazenil, through a benzodiazepine antagonist or inverse agonist action, interrupts, as does spinal transection, the neuronal circuit (cord/brain/cord) necessary for the antianalgesic action of spinal Dyn. Because Dyn antianalgesia is an indirect action, activation of the neuronal circuit must lead to the release of a direct-acting antianalgesic mediator in the spinal cord.
    [Abstract] [Full Text] [Related] [New Search]