These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of cyclic ADP-ribose in the regulation of [Ca2+]i in porcine tracheal smooth muscle.
    Author: Prakash YS, Kannan MS, Walseth TF, Sieck GC.
    Journal: Am J Physiol; 1998 Jun; 274(6):C1653-60. PubMed ID: 9611131.
    Abstract:
    The purpose of the present study was to determine whether cyclic ADP-ribose (cADPR) acts as a second messenger for Ca2+ release through ryanodine receptor (RyR) channels in tracheal smooth muscle (TSM). Freshly dissociated porcine TSM cells were permeabilized with beta-escin, and real-time confocal microscopy was used to examine changes in intracellular Ca2+ concentration ([Ca2+]i). cADPR (10 nM-10 microM) induced a dose-dependent increase in [Ca2+]i, which was blocked by the cADPR receptor antagonist 8-amino-cADPR (20 microM) and by the RyR blockers ruthenium red (10 microM) and ryanodine (10 microM), but not by the inositol 1,4,5-trisphosphate receptor blocker heparin (0.5 mg/ml). During steady-state [Ca2+]i oscillations induced by acetylcholine (ACh), addition of 100 nM and 1 microM cADPR increased oscillation frequency and decreased peak-to-trough amplitude. ACh-induced [Ca2+]i oscillations were blocked by 8-amino-cADPR; however, 8-amino-cADPR did not block the [Ca2+]i response to a subsequent exposure to caffeine. These results indicate that cADPR acts as a second messenger for Ca2+ release through RyR channels in TSM cells and may be necessary for initiating ACh-induced [Ca2+]i oscillations.
    [Abstract] [Full Text] [Related] [New Search]