These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cholinergic nerve function in monkey ciliary arteries innervated by nitroxidergic nerve.
    Author: Toda N, Toda M, Ayajiki K, Okamura T.
    Journal: Am J Physiol; 1998 May; 274(5):H1582-9. PubMed ID: 9612367.
    Abstract:
    We sought to determine the control of ciliary arterial tone by neurogenic acetylcholine (ACh) acting directly on smooth muscle and in conjunction with vasodilator nerves. Isolated posterior ciliary arteries from monkeys responded to ACh (10(-8)-10(-5) M) with dose-related contractions, which were endothelium independent. The response was not affected by cyclooxygenase inhibitors but was abolished by atropine. Relaxations induced at 10(-4) M ACh in the atropine-treated arterial strips were abolished by hexamethonium and NG-nitro-L-arginine (L-NNA), and L-arginine (L-Arg) reversed the response suppressed by L-NNA. Similar results were also obtained on the nicotine (10(-4) M)-induced relaxation. Contractions due to transmural electrical stimulation in the endothelium-denuded strips treated with L-NNA were potentiated by physostigmine and depressed by atropine; the remaining contraction in the presence of atropine was abolished by prazosin. Relaxations associated with electrical stimulation, sensitive to tetrodotoxin, were abolished or reversed to contractions by L-NNA and restored by L-Arg. Stimulation-induced relaxation was attenuated by exogenous ACh and physostigmine and was potentiated by atropine. ACh did not affect the relaxation caused by nitric oxide (NO). Nerve fibers and bundles containing NADPH diaphorase and acetylcholinesterase were histologically demonstrated in the adventitia of ciliary arteries. We conclude that 1) endogenous and exogenous ACh contracts monkey ciliary arteries by acting on muscarinic receptors in smooth muscle cell membranes, 2) vasodilatation elicited by nerve stimulation with electrical pulses or nicotine is mediated by NO synthesized from L-Arg, 3) neurogenic ACh seems to interfere with the nitroxidergic nerve function by acting on prejunctional muscarinic receptors, and 4) high concentrations of ACh stimulate nicotinic receptors in vasodilator nerve terminals and promote the synthesis and/or release of NO.
    [Abstract] [Full Text] [Related] [New Search]