These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. Author: Rosen H, Reshef A, Maeda N, Lippoldt A, Shpizen S, Triger L, Eggertsen G, Björkhem I, Leitersdorf E. Journal: J Biol Chem; 1998 Jun 12; 273(24):14805-12. PubMed ID: 9614081. Abstract: Sterol 27-hydroxylase is important for the degradation of the steroid side chain in conversion of cholesterol into bile acids and has been ascribed a regulatory role in cholesterol homeostasis. Its deficiency causes the autosomal recessive disease cerebrotendinous xanthomatosis (CTX), characterized by progressive dementia, xanthomatosis, and accelerated atherosclerosis. Mice with a disrupted cyp27 (cyp27(-/-)) had normal plasma levels of cholesterol, retinol, tocopherol, and 1,25-dihydroxyvitamin D. Excretion of fecal bile acids was decreased (<20% of normal), and formation of bile acids from tritium-labeled 7alpha-hydroxycholesterol was less than 15% of normal. Compensatory up-regulation of hepatic cholesterol 7alpha-hydroxylase and hydroxymethylglutaryl-CoA reductase (9- and 2-3-fold increases in mRNA levels, respectively) was found. No CTX-related pathological abnormalities were observed. In CTX, there is an increased formation of 25-hydroxylated bile alcohols and cholestanol. In bile and feces of the cyp27(-/-) mice only traces of bile alcohols were found, and there was no cholestanol accumulation. It is evident that sterol 27-hydroxylase is more important for bile acid synthesis in mice than in humans. The results do not support the contention that 27-hydroxylated steroids are critical for maintenance of cholesterol homeostasis or levels of vitamin D metabolites in the circulation.[Abstract] [Full Text] [Related] [New Search]