These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: mu-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. Author: Shon KJ, Olivera BM, Watkins M, Jacobsen RB, Gray WR, Floresca CZ, Cruz LJ, Hillyard DR, Brink A, Terlau H, Yoshikami D. Journal: J Neurosci; 1998 Jun 15; 18(12):4473-81. PubMed ID: 9614224. Abstract: We report the characterization of a new sodium channel blocker, mu-conotoxin PIIIA(mu-PIIIA). The peptide has been synthesized chemically and its disulfide bridging pattern determined. The structure of the new peptide is: [sequence: see text] where Z = pyroglutamate and O = 4-trans-hydroxyproline. We demonstrate that Arginine-14 (Arg14) is a key residue; substitution by alanine significantly decreases affinity and results in a toxin unable to block channel conductance completely. Thus, like all toxins that block at Site I, mu-PIIIA has a critical guanidinium group. This peptide is of exceptional interest because, unlike the previously characterized mu-conotoxin GIIIA (mu-GIIIA), it irreversibly blocks amphibian muscle Na channels, providing a useful tool for synaptic electrophysiology. Furthermore, the discovery of mu-PIIIA permits the resolution of tetrodotoxin-sensitive sodium channels into three categories: (1) sensitive to mu-PIIIA and mu-conotoxin GIIIA, (2) sensitive to mu-PIIIA but not to mu-GIIIA, and (3) resistant to mu-PIIIA and mu-GIIIA (examples in each category are skeletal muscle, rat brain Type II, and many mammalian CNS subtypes, respectively). Thus, mu-conotoxin PIIIA provides a key for further discriminating pharmacologically among different sodium channel subtypes.[Abstract] [Full Text] [Related] [New Search]