These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Delta-protein kinase C phosphorylation parallels inhibition of nerve growth factor-induced differentiation independent of changes in Trk A and MAP kinase signalling in PC12 cells.
    Author: Wooten MW, Seibenhener ML, Heikkila JE, Mischak H.
    Journal: Cell Signal; 1998 Apr; 10(4):265-76. PubMed ID: 9617484.
    Abstract:
    We investigated the ability of bryostatin 1 to block nerve growth factor (NGF)-induced differentiation of pheochromocytoma PC12 cells and to effect expression of protein kinase C (PKC) isoforms. Compared with phorbol myristate acetate (PMA), a likewise potent activator of PKC, high doses of bryostatin (> 200 nM) failed to down-regulate delta-PKC, as with zeta-PKC, whereas, alpha-PKC was completely down-regulated. Two forms of delta-PKC were expressed in PC12 cells, a phosphorylated 78.000 M(r) species and a de-phosphorylated 76.000 M(r) form. High-dose bryostatin treatment resulted in a 4.5-fold increase in phosphorylated delta-PKC and a 2.5-fold increase in phosphotyrosine. Inhibition of tyrosine kinase activity, with either herbimycin or genistein, prior to addition of bryostatin abrogated protection from down-regulation and led to simultaneous increases in ubiquitinated 110.000 M(r)-delta-PKC. Similarly, pre-treatment of cells with N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal, an inhibitor of the proteasome pathway, prior to low-dose treatment with bryostatin resulted in a dose-dependent accumulation of delta-PKC and inhibition of down-regulation. Protection of delta-PKC from down-regulation by high-dose bryostatin requires a counter-balance between protein tyrosine kinase and phosphatase systems. High doses of bryostatin blocked NGF-induced neurite outgrowth without altering Y-490 TrK A phosphorylation or an alteration in pp44/42 mitogen-activated protein kinase. Our findings suggest that the phosphorylation state of delta-PKC may regulate its ability to participate in signal coupling and modulation of cell growth and differentiation pathways. Moreover, these data reveal the existence of a signalling pathway independent of MAP kinase that affects NGF differentiation in a negative fashion.
    [Abstract] [Full Text] [Related] [New Search]