These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide control of drinking, vasopressin and oxytocin release and blood pressure in dehydrated rats. Author: Liu H, Terrell ML, Bui V, Summy-Long JY, Kadekaro M. Journal: Physiol Behav; 1998 Mar; 63(5):763-9. PubMed ID: 9617997. Abstract: Intracerebroventricular (i.c.v.) injection of the inhibitor of NO synthase (NOS), N(G)-nitro-L-arginine methyl ester (L-NAME) (250 microg/5 microL) attenuated the drinking response in rats deprived of water for 24 h. Moreover, oxytocin (OT) levels in plasma increased after 2 min, whereas both oxytocin and vasopressin levels were elevated at 120 min after intracerebroventricular injection. The delayed effect of L-NAME on both hormones was not observed in dehydrated animals allowed to drink water. Blood pressure remained stable after injection of artificial cerebrospinal fluid (aCSF) in dehydrated rats not allowed to drink. In rats having access to water, however, there was an immediate but transient pressor response (0-5 min) with a delayed hypotension from 45 to 120 min. L-NAME consistently increased blood pressure in a biphasic mode, whether the animals drank or not, with an early peak at 5 min that decayed after 15-30 min and a second pressor response beginning at 30-45 min and remaining elevated at 120 min when the experiment ended. These pressor responses were independent of the adrenal glands. Thus, centrally produced nitric oxide facilitates drinking, inhibits release of vasopressin and oxytocin from the magnocellular system, and maintains resting arterial blood pressure in normally hydrated and dehydrated rats.[Abstract] [Full Text] [Related] [New Search]