These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurocalcin immunoreactivity in the rat main olfactory bulb. Author: Briñón JG, Arévalo R, Crespo C, Bravo IG, Okazaki K, Hidaka H, Aijón J, Alonso JR. Journal: Brain Res; 1998 Jun 08; 795(1-2):204-14. PubMed ID: 9622632. Abstract: The morphological characteristics and distribution of neurocalcin (NC)-immunoreactive elements were studied in the rat main olfactory bulb (OB) using a polyclonal antibody and the avidin-biotin immunoperoxidase method. NC-positive elements were abundant in the glomerular layer (GL), where numerous immunostained external tufted cells and periglomerular cells were detected. Other less abundant NC-immunolabeled populations included middle and internal tufted cells, Van Gehuchten cells, horizontal cells, vertical cells of Cajal, deep short-axon cells and granule cells. This study demonstrates the presence of NC immunoreactivity in subsets of different neuronal types in the rat main OB. This calcium-binding protein has been found in interneurons, and no evidence of immunoreactivity to NC is detected in projecting neurons. Despite the large population of labeled external tufted cells, most of them belong according to morphological criteria to the local circuit group and some others to those with interbulbar and/or intrabulbar connections. The identification of neuronal subpopulations expressing NC provides a further characterization and shows the existence of biochemical differences within morphologically identical neurons. Thus, this marker may be a useful tool in unravelling the circuitries of the rodent OB in both normal and experimental conditions. The exact physiological function of NC in the olfactory system remains unknown. On the basis of similarities to recoverin, it could be involved in mechanisms responsible for sensory adaptation. Additionally, its calcium-binding abilities may contribute to improve the temporal precision of stimuli transmission, or be concerned with general calcium-related events occurring in specific interneuronal groups.[Abstract] [Full Text] [Related] [New Search]