These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi's sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development.
    Author: Samaniego F, Markham PD, Gendelman R, Watanabe Y, Kao V, Kowalski K, Sonnabend JA, Pintus A, Gallo RC, Ensoli B.
    Journal: Am J Pathol; 1998 Jun; 152(6):1433-43. PubMed ID: 9626048.
    Abstract:
    All forms of Kaposi's sarcoma (KS) are characterized by spindle cell proliferation, angiogenesis, inflammatory cell infiltration, and edema. We have previously reported that spindle cells of primary KS lesions and KS-derived spindle cell cultures express high levels of basic fibroblast growth factor (bFGF), which is promoted by the inflammatory cytokines identified in these lesions. These cytokines, namely, tumor necrosis factor, interleukin-1, and interferon-gamma, induce production and release of bFGF, which stimulates angiogenesis and spindle cell growth in an autocrine fashion. Here we show that both AIDS-KS and classical KS lesions co-express vascular endothelial growth factor (VEGF) and bFGF. VEGF production by KS cells is promoted synergistically by inflammatory cytokines present in conditioned media from activated T cells and in KS lesions. KS cells show synthesis of VEGF isoforms that are mitogenic to endothelial cells but not to KS spindle cells, suggesting a prevailing paracrine effect of this cytokine. This may be due to the level of expression of the flt-1-VEGF receptor that is down-regulated in KS cells as compared with endothelial cells. KS-derived bFGF and VEGF synergize in inducing endothelial cell growth as shown by studies using both neutralizing antibodies and antisense oligodeoxynucleotides directed against these cytokines. In addition, VEGF and bFGF synergize to induce angiogenic KS-like lesions in nude mice and vascular permeability and edema in guinea pigs. These results indicate that inflammatory cytokines present in KS lesions stimulate the production of bFGF and VEGF, which, in turn, cooperate to induce angiogenesis, edema, and KS lesion formation.
    [Abstract] [Full Text] [Related] [New Search]