These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis, properties and biological evaluation of substituted furo[3,2-e] and pyrano[3,2-e]pyrido[4,3-b]indoles. Author: Costache E, Nguyen CH, Guilbaud N, Léonce S, Pierré A, Atassi G, Bisagni E. Journal: Anticancer Drug Des; 1998 Jun; 13(4):373-86. PubMed ID: 9627674. Abstract: Furo[3,2-e]- and pyrano[3,2-e]pyrido[4,3-b] indoles were synthesized from 1,4,5-trisubstituted 8-hydroxy-5H-pyrido[4,3-b]indoles. The intermediates, 10-chloro-6H-furo[3,2-e]pyrido[4,3-b]indole (11), 10-chloro-2,6-dihydro-1H-furo[3,2-e]pyrido-[4,3-b]indole (10) and 11-chloro-2,3-dihydro-3H,7H-pyrano[3,2-e]pyrido[4,3-b]indole (15), were substituted by diamines under thermal conditions (180 degrees C). In contrast, 11-chloro-3H,7H-pyrano[3,2-e]pyrido[4,3-b]indole (14), 9-allyl-1-chloro-4,5-dimethyl-5H-pyrido[4,3-b]indole (9a) and 8-propargyloxy-4,5-dimethyl-5H-pyrido[4,3-b]indole (8) led mainly to 1-aminosubstituted 8-hydroxy-5H-pyrido[4,3-b]indole derivatives resulting from an unexpected C3 unit elimination. When examined in three tumour cell lines (L1210 leukaemia, the B16 melanoma and the MCF7 breast adenocarcinoma) the new amino substituted furo[3,2-e]-, dihydrofuro[3,2-e]- and dihydropyrano[3,2-e]-pyrido[4,3-b]indole derivatives revealed cytotoxic properties, especially important for the 2,6-dihydro-1H-furo[3,2-e]pyrido[4,3-b]indole series. The most active compound (12b) significantly inhibits both DNA topoisomerases I and II, and is as potent as Adriamycin at inhibiting cell proliferation and inducing a massive accumulation of L1210 cells in the G2 + M phase of the cell cycle. However, 12b was less active than Adriamycin when tested in vivo against P388 leukaemia or the B16 melanoma tumour models.[Abstract] [Full Text] [Related] [New Search]