These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: HDL3-mediated inhibition of thrombin-induced platelet aggregation and fibrinogen binding occurs via decreased production of phosphoinositide-derived second messengers 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate. Author: Nofer JR, Walter M, Kehrel B, Wierwille S, Tepel M, Seedorf U, Assmann G. Journal: Arterioscler Thromb Vasc Biol; 1998 Jun; 18(6):861-9. PubMed ID: 9633924. Abstract: We demonstrate that physiological concentrations of HDL3 inhibit the thrombin-induced platelet fibrinogen binding and aggregation in a time- and concentration-dependent fashion. The underlying mechanism includes HDL3-mediated inhibition of phosphatidylinositol 4,5-bis-phosphate turnover, 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate formation, and intracellular calcium mobilization. The inhibitory effects of HDL3 on inositol 1,4,5-tris-phosphate formation and intracellular calcium mobilization were abolished after covalent modification of HDL3 with dimethylsuberimidate. Furthermore, they could be blocked by calphostin C and bis-indolylmaleimide, 2 highly selective and structurally unrelated protein kinase C inhibitors. However, the inhibitory effects of HDL3 were not blocked by H89, a protein kinase A inhibitor. In addition, HDL3 failed to induce cAMP formation but stimulated the phosphorylation of the protein kinase C 40- to 47-kD major protein substrate. We observed a close temporal relationship between the HDL3-mediated inhibition of thrombin-induced inositol 1,4,5-tris-phosphate formation, intracellular calcium mobilization, and fibrinogen binding and the phosphorylation of the protein kinase C 40- to 47-kD major protein substrate. Taken together, these findings indicate that the HDL3-mediated inhibition of thrombin-induced fibrinogen binding and aggregation occurs via inhibition of phosphatidylinositol 4,5-bis-phosphate turnover and formation of 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate. Protein kinase C may be involved in this process.[Abstract] [Full Text] [Related] [New Search]