These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Localization of Cys133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer. Author: Luo Y, Wu JL, Gergely J, Tao T. Journal: Biophys J; 1998 Jun; 74(6):3111-9. PubMed ID: 9635764. Abstract: We have used the technique of resonance energy transfer in conjunction with distance geometry analysis to localize Cys133 of troponin-I (TnI) with respect to troponin-C (TnC) in the ternary troponin complex and the binary TnC.TnI complex in the presence and absence of Ca2+. Cys133 of TnI was chosen because our previous work has shown that the region of TnI containing this residue undergoes Ca2+-dependent movements between actin and TnC, and may play an important role in the regulatory function of troponin. For this purpose, a TnI mutant with a single Cys at position 133, and TnC mutants, each with a single Cys at positions 5, 12, 21, 41, 49, 89, 98, 133, and 158, were constructed by site-directed mutagenesis. The distances between TnI Cys133 and each of the nine residues in TnC were then measured. Using a least-squares minimization procedure, we determined the position of TnI Cys133 in the coordinate system of the crystal structure of TnC. Our results show that in the presence of Ca2+, TnI Cys133 is located near residue 12 beneath the N-terminal lobe of TnC, and moves away by 12.6 A upon the removal of Ca2+. TnI Cys133 and the region of TnC that undergoes major change in conformation in response to Ca2+ are located roughly on opposite sides of TnC's central helix. This suggests that the region in TnI that undergoes Ca2+-dependent interaction with TnC is distinct from that interacting with actin.[Abstract] [Full Text] [Related] [New Search]