These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise.
    Author: Brown MC, Kujawa SG, Duca ML.
    Journal: J Neurophysiol; 1998 Jun; 79(6):3077-87. PubMed ID: 9636109.
    Abstract:
    Single medial olivocochlear (MOC) neurons were recorded from the cochlea of the anesthetized guinea pig. We used tones and noise presented monaurally and binaurally and measured responses for sounds up to 105 dB sound pressure level (SPL). For monaural sound, MOC neuron firing rates were usually higher for noise bursts than tone bursts, a situation not observed for afferent fibers of the auditory nerve that were sampled in the same preparations. MOC neurons also differed from afferent fibers in having less saturation of response. Some MOC neurons had responses that continued to increase even at high sound levels. Differences between MOC and afferent responses suggest that there is convergence in the pathway to olivocochlear neurons, possibly a combination of inputs that are at the characteristic frequency (CF) with others that are off the CF. Opposite-ear noise almost always facilitated the responses of MOC neurons to sounds in the main ear, the ear that best drives the unit. This binaural facilitation depends on several characteristics that pertain to the main ear: it is higher in neurons having a contralateral main ear (contra units), it is higher at main-ear sound levels that are moderate (approximately 65 dB SPL), and it is higher in neurons with low discharge rates to main-ear stimuli. Facilitation also depends on parameters of the opposite-ear sound: facilitation increases with noise level in the opposite ear until saturating, is greater for continuous noise than noise bursts, and is usually greater for noise than for tones. Using optimal opposite-ear facilitators and high-level stimuli, the firing rates of olivocochlear neurons range up to 140 spikes/s, whereas for moderate-level monaural stimuli the rates are <80 spikes/s. At high sound levels, firing rates of olivocochlear neurons increase with CF, an increase that may compensate for the known lower effectiveness of olivocochlear synapses on outer hair cells responding to high frequencies. Overall, our results demonstrate a high MOC response for binaural noise and suggest a prominent role for the MOC system in environments containing binaural noise of high level.
    [Abstract] [Full Text] [Related] [New Search]