These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia.
    Author: Brooks JD, Weinstein M, Lin X, Sun Y, Pin SS, Bova GS, Epstein JI, Isaacs WB, Nelson WG.
    Journal: Cancer Epidemiol Biomarkers Prev; 1998 Jun; 7(6):531-6. PubMed ID: 9641498.
    Abstract:
    Prostate intraepithelial neoplasia (PIN) is a purported prostate cancer precursor lesion and a candidate biomarker for efficacy assessment in prostate cancer chemoprevention trials. Loss of expression of the pi-class glutathione S-transferase enzyme GSTP1, which is associated with the hypermethylation of deoxycytidine residues in the 5'-regulatory CG island region of the GSTP1 gene, is a near-universal finding in human prostate cancer. GSTP1 expression was assessed by immunohistochemistry in 60 high-grade PIN samples adjacent to and distant from prostate adenocarcinoma. Whereas abundant enzyme polypeptide expression was evident in all normal prostatic tissues, all samples of high-grade PIN and adenocarcinoma were completely devoid of GSTP1. DNA from 10 high-grade PIN lesions was analyzed for GSTP1 CG island methylation changes using a PCR technique targeting a polymorphic (ATAAA)n repeat sequence in the promoter region of the GSTP1 gene. Somatic GSTP1 CG island methylation changes were detected in DNA from 7 of the 10 PIN lesions. Allele discrimination was possible for 5 of the 10 DNA samples: 2 of the 5 samples exhibited DNA methylation changes at both alleles; whereas 3 samples displayed no DNA methylation changes at either allele. GSTP1 CG island methylation changes were present in each of the five homozygous samples. Hypermethylation of the 5'-regulatory region of the GSTP1 gene may serve as an important molecular genetic biomarker for both prostate cancer and PIN. The finding of frequent GSTP1 methylation changes in PIN and prostate cancer supports a role for PIN lesions as a prostate cancer precursor and may provide insight to the molecular pathogenesis of prostate cancer.
    [Abstract] [Full Text] [Related] [New Search]