These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The arcuate nucleus is the major source for neuropeptide Y-innervation of thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.
    Author: Légrádi G, Lechan RM.
    Journal: Endocrinology; 1998 Jul; 139(7):3262-70. PubMed ID: 9645702.
    Abstract:
    Neuropeptide Y (NPY) immunoreactive (-ir) nerve fibers densely innervate hypophysiotropic TRH perikarya and dendrites in the hypothalamic paraventricular nucleus (PVN). To evaluate the contribution of the arcuate nucleus (Arc) to this innervation, the effect of Arc ablation by neonatal monosodium glutamate (MSG) treatment on the density of NPY-fibers contacting TRH neurons in the PVN was investigated. After the lesioned animals and vehicle-treated controls reached adulthood, the number of contacts between NPY-ir boutons and TRH-ir perikarya in the PVN was determined in double-immunostained sections. In controls, numerous contacts between NPY-ir terminals and TRH perikarya and dendrites were observed, confirming earlier findings. MSG treatment resulted in a marked reduction of the size of the Arc and also the number of NPY-perikarya with a concomitant reduction of 82.4 +/-2.1% in the relative number of NPY terminals contacting TRH perikarya and first order dendrites in the medial parvocellular and periventricular subdivisions of the PVN. In contrast, lesioning of the ascending adrenergic bundle in the brain stem caused no statistically significant change in the number of NPY-terminals in close apposition to hypophysiotropic TRH neurons in the PVN. These data confirm earlier findings that NPY-containing axon terminals innervate TRH neurons in the PVN and further demonstrate a potentially important anatomical relationship between NPY-producing neurons in the Arc and hypophysiotropic TRH neurons.
    [Abstract] [Full Text] [Related] [New Search]