These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of mu heavy chain in B cell development. I. Blocked B cell maturation but complete allelic exclusion in the absence of Ig alpha/beta.
    Author: Cronin FE, Jiang M, Abbas AK, Grupp SA.
    Journal: J Immunol; 1998 Jul 01; 161(1):252-9. PubMed ID: 9647231.
    Abstract:
    There is good evidence for a signaling role played by Ig heavy chain in the developmental transition through the pre-B cell stage. We have previously described signal-capable or signal-incapable mutants of mu heavy chain in which a signaling defect is caused by failure to associate with the Ig alpha/beta heterodimer. To further characterize the role of Ig heavy chain-mediated signaling in vivo, as well as in B cell development and allelic exclusion, we have created transgenic mice in which the B cells express these signal-capable and signal-incapable mutant mu chains. Failure of mu to signal via Ig alpha/beta results in a block in B cell development in mice expressing the signal-incapable mu. A small number of B cells in these animals do escape the developmental block and are expressed in the spleen and the periphery as B220+ transgenic IgM+ cells. These cells respond to LPS by proliferating but show no response to T-independent-specific Ag. In contrast, B cells expressing the signal-capable B cell receptor show a strong signaling response to Ag-specific stimulus. There is no Ig alpha seen in association with signal-deficient IgM. Thus, the B cell receptor complex is not assembled, and no signal can be delivered. Despite the block in developmental signaling, allelic exclusion is complete. There is no detectable coexpression of transgenic IgM and endogenous murine IgM, nor is there rearrangement of the endogenous heavy chain genes. This suggests that differing signaling mechanisms are responsible for the developmental transition and allelic exclusion and thus allows for separate examination of these signaling mechanisms.
    [Abstract] [Full Text] [Related] [New Search]