These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Potentiation of the contraction following a prolonged depolarization in isolated ferret myocardium.
    Author: Arlock P, Wohlfart B, Noble M.
    Journal: Acta Physiol Scand; 1998 May; 163(1):3-11. PubMed ID: 9648617.
    Abstract:
    The contractile force was studied in ferret papillary muscles during voltage clamp depolarizations, using the single sucrose gap method. Prolongation of a test depolarization within a train produced potentiation of the following contraction. The effects of varied duration and membrane potential of the test depolarization upon the potentiated force of the following beat were studied. We assumed that force of a beat was an index of calcium entry on the previous depolarization. The relationship between the peak contractile force of the following potentiated beat and the systolic membrane potential of the test depolarization revealed an equilibrium around -18 mV. This was manifest after 100 ms of no effect. Positive potentials caused potentiation of force of the following beat; negative potentials caused suppression of force of the following beat. Calcium entry, if carried by an electrogenic exchange mechanism, would be revealed as a membrane current developing after 100 ms. Membrane current at these times was always outward. When the duration of the test depolarization was prolonged, outward current prior to repolarisation progressively increased. When the duration of the test depolarization was held constant, outward current was varied by variation in membrane potential. Force of the following beat was proportional to the test clamp membrane potential. The potentiation of the contraction following a prolonged depolarization was abolished by substituting 75% of the sodium in the perfusion medium with lithium. These results are compatible with the hypothesis that potentiation of force following a prolonged depolarization is derived from calcium entry into myocardial cells by reversed sodium-calcium exchange.
    [Abstract] [Full Text] [Related] [New Search]