These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for activation of caspase-3-like protease in excitotoxin- and hypoxia/hypoglycemia-injured neurons.
    Author: Nath R, Probert A, McGinnis KM, Wang KK.
    Journal: J Neurochem; 1998 Jul; 71(1):186-95. PubMed ID: 9648865.
    Abstract:
    Caspase activation has been shown to be a critical step in several models of neuronal apoptosis such as staurosporine treatment of human neuroblastoma SH-SY5Y cells and potassium deprivation of rat cerebellar granule neurons. One common event is the appearance of caspase-mediated 120-kDa nonerythroid alpha-spectrin breakdown product (SBDP120). Second, inhibitors of the caspase family are effective blockers of such neuronal death. In this study, we report the appearance of caspase-mediated SBDP120 in excitotoxin-challenged fetal rat cerebrocortical neurons [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate] and rat cerebellar granule neurons (NMDA and kainate). A general caspase inhibitor, carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene (Z-D-DCB), blocked the formation of SBDP120 under these conditions and attenuated the observed NMDA-induced lactate dehydrogenase (LDH) release in both cell types. Furthermore, hydrolytic activity toward a caspase-3-preferred synthetic peptide substrate, acetyl-DEVD-7-amido-4-methylcoumarin, was significantly elevated in NMDA-treated granule neurons. Lastly, oxygen-glucose deprivation (OGD)-challenged cerebrocortical cultures also showed the appearance of SBDP120. Again, Z-D-DCB blocked the SBDP120 formation as well as attenuated the LDH release from the OGD-challenged neurons. Taken together, the presence of caspase-specific SBDP120 and the neuroprotective effects of Z-D-DCB strongly suggest that caspase activation contributes at least in part to excitotoxin- and OGD-induced neuronal death.
    [Abstract] [Full Text] [Related] [New Search]