These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Topographical localization of iron in brains of the aged fat-tailed dwarf lemur (Cheirogaleus medius) and gray lesser mouse lemur (Microcebus murinus).
    Author: Gilissen EP, Ghosh P, Jacobs RE, Allman JM.
    Journal: Am J Primatol; 1998; 45(3):291-9. PubMed ID: 9651651.
    Abstract:
    Iron deposits in the human brain are characteristic of normal aging but have also been implicated in various neurodegenerative diseases. Among nonhuman primates, strepsirhines are of particular interest because hemosiderosis has been consistently observed in captive aged animals. In particular, the cheirogaleids, because of their small size, rapid maturity, fecundity, and relatively short life expectancy, are a useful model system for the study of normal and pathological cerebral aging. This study was therefore undertaken to explore iron localization in the brain of aged cheirogaleids (mouse and dwarf lemurs) with histochemistry and magnetic resonance microscopy. Results obtained with both techniques were comparable. There was no difference between old animals in the two species. The young animals (3 years old) showed no iron deposits. In the old animals (8-15 years old), iron pigments were mainly localized in the globus pallidus, the substantia nigra, the neocortical and cerebellar white matter, and anterior forebrain structures, including the nucleus basalis of Meynert. This distribution agrees with previous findings in monkeys and humans. In addition, we observed iron in the thalamus of these aged non-human primates. Microscopic NMR images clearly reveal many features seen with the histochemical procedure, and magnetic resonance microscopy is a powerful method for visualizing age-related changes in brain iron.
    [Abstract] [Full Text] [Related] [New Search]