These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Author: Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A. Journal: Nature; 1998 Jun 25; 393(6687):790-3. PubMed ID: 9655393. Abstract: Peroxisome proliferator-activated receptors (PPARs) are key players in lipid and glucose metabolism and are implicated in metabolic disorders predisposing to atherosclerosis, such as dyslipidaemia and diabetes. Whereas PPARgamma promotes lipid storage by regulating adipocyte differentiation, PPARalpha stimulates the beta-oxidative degradation of fatty acids. PPARalpha-deficient mice show a prolonged response to inflammatory stimuli, suggesting that PPARalpha is also a modulator of inflammation. Hypolipidaemic fibrate drugs are PPARalpha ligands that inhibit the progressive formation of atherosclerotic lesions, which involves chronic inflammatory processes, even in the absence of their atherogenic lipoprotein-lowering effect. Here we show that PPARalpha is expressed in human aortic smooth-muscle cells, which participate in plaque formation and post-angioplasty re-stenosis. In these smooth-muscle cells, we find that PPARalpha ligands, and not PPARgamma ligands, inhibit interleukin-1-induced production of interleukin-6 and prostaglandin and expression of cyclooxygenase-2. This inhibition of cyclooxygenase-2 induction occurs transcriptionally as a result of PPARalpha repression of NF-kappaB signalling. In hyperlipidaemic patients, fenofibrate treatment decreases the plasma concentrations of interleukin-6, fibrinogen and C-reactive protein. We conclude that activators of PPARalpha inhibit the inflammatory response of aortic smooth-muscle cells and decrease the concentration of plasma acute-phase proteins, indicating that PPARalpha in the vascular wall may influence the process of atherosclerosis and re-stenosis.[Abstract] [Full Text] [Related] [New Search]