These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Airway-parenchymal interdependence after airway contraction in rat lung explants.
    Author: Adler A, Cowley EA, Bates JH, Eidelman DH.
    Journal: J Appl Physiol (1985); 1998 Jul; 85(1):231-7. PubMed ID: 9655780.
    Abstract:
    The constriction of pulmonary airways is limited by the tethering effect exerted by parenchymal attachments. To characterize this tethering effect at the scale of intraparenchymal airways, we studied the pattern of parenchymal distortion due to bronchoconstriction in a rat lung explant system. First, we measured the elastic modulus under tension for 2% (wt/vol) agarose alone (37.6 +/- 1.5 kPa) and for agarose-filled lung (5.7 +/- 1.3 kPa). The latter is similar to the elastic modulus of air-filled lung at total lung capacity (4.5-6 kPa) (S. J. Lai-Fook, T. A. Wilson, R. E. Hyatt, and J. R. Rodarte. J. Appl. Physiol. 40: 508-513, 1976), suggesting that explants can be used as a model of lung tissue distortion. Subsequently, confocal microscopic images of fluorescently labeled 0.5-mm-thick explants prepared from agarose-filled rat lungs inflated to total lung capacity (48 ml/kg) were acquired. Images were taken before and after airway constriction was induced by direct application of 10 mM methacholine, and the pattern of parenchymal distortion was measured from the displacement of tissue landmarks identified in each image for 14 explants. The magnitude of the radial component of tissue displacement was calculated as a function of distance from the airway wall and characterized by a parameter, b, describing the rate at which tissue movement decreased with radial distance. The parameter b was 0.994 +/- 0.19 (SE), which is close to the prediction of b = 1 of micromechanical modeling (T. A. Wilson. J. Appl. Physiol. 33: 472-478, 1972). There was significant variability in b, however, which was correlated with the fractional reduction in airway diameter (r = 0.496). Additionally, parenchymal distortion showed significant torsion with respect to the radial direction. This torsion was similar in concentric zones around the airway, suggesting that it originates from inhomogeneity in the parenchyma rather than inhomogeneous airway constriction. Our results demonstrate the significance of the nonlinear mechanical properties of alveolar walls and the anisotropy of the parenchyma in determining the nature of airway-parenchymal interdependence.
    [Abstract] [Full Text] [Related] [New Search]