These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ETA receptor mediated inhibition of intracellular pH regulation in cultured bovine corneal epithelial cells. Author: Wu X, Torres-zamorano V, Yang H, Reinach PS. Journal: Exp Eye Res; 1998 Jun; 66(6):699-708. PubMed ID: 9657902. Abstract: The contributions were determined in primary cultures of bovine corneal epithelial cells (BCEC) of Na:H exchange (NHE) and vacuolar H+-ATPase (i.e. V-type) activity to the regulation of intracellular pH (pHi). Furthermore, we characterized the effects on pHi regulation of exposure to 1 microM ET-1 under control and acid loaded conditions. With the pH sensitive dye, 2',7' Bis (carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester (BCECF-AM), the control pHi was 7.1 in NaCl (nominally HCO3-free) Ringers. Inhibition of NHE with 100 microM dimethylamiloride (DMA) rapidly decreased pHi by 0.37 units. Similarly, selective inhibition of V-type H+-ATPase with 10 microM bafilomycin A1 decreased pHi by 0.22 units. Following acid loading in NaCl Ringers with a 20 mm NH4Cl prepulse, pHi recovery was partially inhibited by exposure to either Na-free (NMGCl) Ringers, 100 microM DMA or 20 microM bafilomycin A1. Based on decreases in H+ efflux resulting from selective inhibition of NHE and V-type H+ pump activity, NHE activity accounts for 76% of the pHi recovery following acid loading. Under control conditions, ET-1 (1 microM) had no effect on pHi whereas ET-1 completely suppressed pHi recovery following acid loading in NaCl or NMGCl Ringers. This inhibitory effect was largely due to stimulation of ETA because in the presence of BQ-123 (10 microM), a selective ETA receptor antagonist, pHi recovery was completely restored. Suppression of pHi recovery also occurred following stimulation of protein kinase C (PKC) with 10(-7) m phorbol myristate (PMA) whereas 10(-7) m 4 alpha phorbol 12,13 didecanoate (PDD) had no effect. ET-1 failed to suppress pHi recovery after inhibition of PKC with 0.5 microM calphostin C suggesting that the inhibition of pHi recovery by ET-1 is a consequence of PKC stimulation. Similarly, inhibition of Ca2+-dependent calmodulin stimulated CaM II kinase with KN-62 (10 microM) reversed the suppression of pHi recovery by ET-1. Preinhibition of either protein phosphatase (PP), PP-1, PP-2A or PP-2B activity with 1 microM phenylarsine oxide, 10 nm okadaic acid, 10 microM cyclosporin A1 or 20 microM BAPTA, also obviated the suppression of pHi recovery by ET-1. Therefore ETA receptor mediated inhibition of pHi regulation following acid loading could be a consequence of either PKC or CaMII kinase stimulation. Each one of these kinases may in turn phosphorylate and thereby stimulate the activities of PP-1, PP-2A or PP-2B. An increase in the activity of any one of these protein phosphatases could lead to dephosphorylation of the NHE and V-type H+ pump. This alteration may prevent them from becoming adequately stimulated to elicit pHi recovery in response to acid loading.[Abstract] [Full Text] [Related] [New Search]