These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica.
    Author: Roehrig JT, Bolin RA, Kelly RG.
    Journal: Virology; 1998 Jul 05; 246(2):317-28. PubMed ID: 9657950.
    Abstract:
    Although dengue (DEN) virus is the etiologic agent of dengue fever, the most prevalent vector-borne viral disease in the world, precise information on the antigenic structure of the dengue virion is limited. We have prepared a set of murine monoclonal antibodies (MAbs) specific for the envelope (E) glycoprotein of DEN 2 virus and used these antibodies in a comprehensive biological and biochemical analysis to identify 16 epitopes. Following domain nomenclature developed for the related flavivirus, tick-borne encephalitis, three functional domains were identified. Five epitopes associated with domain A were arranged in three spatially independent regions. These A-domain epitopes were destroyed by reduction, and antibodies reactive with these epitopes were able to block virus hemagglutination, neutralize virus infectivity, and block virus-mediated cell membrane fusion. Domain-A epitopes were present on the full-length E glycoprotein, a 45-kDa tryptic peptide representing its first 400 amino acids (aa) and a 22-kDa tryptic peptide representing at least aa 1-120. Four epitopes mapped into domain B, as determined by their partial resistance to reduction and the localization of these epitopes on a 9-kDa tryptic or chymotryptic peptide fragment (aa 300-400). One domain-B-reactive MAb was also capable of binding to a DEN 2 synthetic peptide corresponding to aa 333-351 of the E glycoprotein, confirming the location of this domain. Domain-B epitopes elicited MAbs that were potent neutralizers of virus infectivity and blocked hemagglutination, but they did not block virus-mediated cell-membrane fusion. Domains A and B were spatially associated. As with tick-borne encephalitis virus, determination of domain C was more problematic; however, at least four epitopes had biochemical characteristics consistent with C-domain epitopes.
    [Abstract] [Full Text] [Related] [New Search]