These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Uncompetitive inhibition by adenine of the RNA-N-glycosidase activity of ribosome-inactivating proteins. Author: Pallanca A, Mazzaracchio R, Brigotti M, Carnicelli D, Alvergna P, Sperti S, Montanaro L. Journal: Biochim Biophys Acta; 1998 May 19; 1384(2):277-84. PubMed ID: 9659388. Abstract: Ricin is a member of the ribosome-inactivating protein (RIP) family with RNA-N-glycosidase activity which inactivates eukaryotic ribosomes by specifically removing adenine from the first adenosine of a highly conserved GAGA loop present in 28S rRNA. Free adenine protects ribosomes in cell-free systems from inactivation by ricin. Protection by adenine is highly specific, since AMP, adenosine and modified adenines (1-methyladenine and ethenoadenine) were completely ineffective. Kinetic analysis of the behaviour of adenine as inhibitor of the RNA-N-glycosidase reaction catalysed by ricin, Shiga-like toxin I and momordin, two other members of the RIP family, established that inhibition was of the uncompetitive type, the inhibitor binding to the enzyme-substrate complex. Adenine did not protect ribosomes from alpha-sarcin, an RNAase that inactivates ribosomes by cleaving the phosphodiester bond located in the GAGA loop at one nucleotide distance from the adenosine depurinated by the RNA-N-glycosidases. Adenine at the concentration of 1 mM lowered 1.5-fold the toxicity of ricin and 3.7-fold that of Shiga-like toxin I on Vero cells in culture. The same concentration of adenine decreased 2.4-fold the inactivation of isolated ribosomes by ricin, 2.8-fold the inactivation by Shiga-like toxin I and 20-fold that by momordin.[Abstract] [Full Text] [Related] [New Search]