These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Colocalization of 11-cis retinyl esters and retinyl ester hydrolase activity in retinal pigment epithelium plasma membrane.
    Author: Mata NL, Villazana ET, Tsin AT.
    Journal: Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1312-9. PubMed ID: 9660478.
    Abstract:
    PURPOSE: To identify the subcellular locale of 11-cis retinyl esters in bovine retinal pigment epithelium (RPE) and to characterize the enzymic mechanism responsible for liberation of 11-cis retinoids in this compartment. METHODS: Endoplasmic reticulum (ER)- enriched and plasma membrane (PM)-enriched protein fractions were prepared from bovine RPE microsomes using sequential discontinuous sucrose and Percoll gradient fractionation. Enzyme markers for ER (such as carboxylesterase), and PM (such as 5'-nucleotidase [5'-ND]; alkaline phosphatase [AP]; and ouabain-sensitive Na+,K+-ATPase [ATPase]) were used to identify the subfractions. Membrane-associated retinoids were quantified by high-performance liquid chromatography (HPLC) and retinyl ester hydrolase (REH) activities were determined by radiometric and chromatographic (HPLC) means. RESULTS: Chromatographic analyses of membrane-associated retinoids showed that 11-cis retinyl esters are localized mainly in PM-enriched fractions, whereas all-trans retinyl esters are associated predominantly with ER-enriched membranes; profiles of the distribution of 11-cis- and all-trans REH activities were consistent with the retinyl ester distribution. Further purification of the crude PM fraction yielded a fraction (P2) that was significantly enriched with 5'-ND (fivefold), ATPase (15-fold), AP (10-fold), and 11-cis retinyl ester hydrolase (11-cis REH; threefold) activities, but was relatively devoid of carboxylesterase and all-trans REH activities. Apparent kinetic constants (Km(app) and Vm(app)) for 11-cis REH activity in P2 were 18 microM and 1800 picomoles/min per mg, respectively. CONCLUSIONS: This is the first identification of an 11-cis-specific REH activity in RPE plasma membrane. Results from these studies demonstrate the capacity of RPE plasma membranes to accommodate and hydrolyze 11-cis retinyl esters. Plasma membrane storage and mobilization of 11-cis retinyl esters represents a novel compartmentalization of retinoid metabolism that is distinct from the sites where 11-cis retinoids are produced. The implication of these findings for present theories of visual chromophore biosynthesis are discussed.
    [Abstract] [Full Text] [Related] [New Search]