These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Time-resolved FTIR studies of the GTPase reaction of H-ras p21 reveal a key role for the beta-phosphate. Author: Cepus V, Scheidig AJ, Goody RS, Gerwert K. Journal: Biochemistry; 1998 Jul 14; 37(28):10263-71. PubMed ID: 9665734. Abstract: FTIR difference spectroscopy has been established as a new tool to study the GTPase reaction of H-ras p21 (Ras) in a time-resolved mode at atomic resolution without crystallization. The phosphate vibrations were analyzed using site specifically 18O-labeled caged GTP isotopomers. One nonbridging oxygen per nucleotide was replaced for an 18O isotope in the alpha-, beta-, or gamma-position of the phosphate chain. In photolysis experiments with free caged GTP, strong vibrational coupling was observed among all phosphate groups. The investigation of Ras*caged GTP photolysis and the subsequent hydrolysis reaction of Ras*GTP showed that the phosphate vibrations are largely decoupled by interaction with the protein in contrast to free GTP. The characteristic isotope shifts allow band assignments to isolated alpha-, beta-, and gamma-phosphate vibrations of caged GTP, GTP, and the liberated inorganic phosphate. The unusually low frequency of the beta (PO2-) vibration of Ras-bound GTP, as compared to free GTP, indicates a large decrease in the P-O bond order. The bond order decrease reveals that the oxygen atoms of the beta (PO2-) group interact much more strongly with the protein environment than the gamma-oxygen atoms. Thereby, electrons are withdrawn from the beta-phosphorus, and thus also from the beta/gamma-bridging oxygen. This leads to partial bond breakage or at least weakening of the bond between the beta/gamma-bridging oxygen and the gamma-phosphorus atom as a putative early step of the GTP hydrolysis. Based on these results, we propose a key role of the beta-phosphate for GTP hydrolysis. The assignments of phosphate bands provide a crucial marker for further time-resolved FTIR studies of the GTPase reaction of Ras.[Abstract] [Full Text] [Related] [New Search]