These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lucifer Yellow filling of area X-projecting neurons in the high vocal center of female canaries. Author: Benton S, Cardin JA, DeVoogd TJ. Journal: Brain Res; 1998 Jul 13; 799(1):138-47. PubMed ID: 9666104. Abstract: The avian high vocal center (HVC) is a complex forebrain nucleus that coordinates the sensorimotor integration necessary for song learning and production. It receives auditory and potentially somatosensory input, and sends major projections to vocal motor and anterior forebrain nuclei. The HVC has at least four morphological classes of neurons for which the connectivity remains uncertain. Previous studies have alluded to the functional identity of the cell classes, but none have provided the definitive evidence necessary for subsequent identification of behaviorally relevant changes within known neuronal populations. The cell filling technique we have adapted for use in the song system provides a method by which hodologically identified classes can be described with precision, and song related changes in their morphology can be readily identified. Neurons in female canaries (Serinus canarius) that project to Area X of the anterior forebrain pathway were retrogradely labeled, selectively filled with Lucifer Yellow in a fixed slice preparation, and converted to a Golgi-like stain through an immunocytochemical reaction. We have identified Area X-projecting neurons as belonging to the thick dendrite class of Nixdorf et al. [B.E. Nixdorf, S.S. Davis, T.J. DeVoogd, Morphology of golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries, J. Comp. Neurol. 284 (1989) 337-349] and have shown definitively that they are among the HVC neurons that can receive direct auditory input, as this cell class has short dendrites that extend into the shelf region ventral to HVC that is known to receive auditory inputs. Well-filled axons had collaterals that ramified and terminated within the nucleus, demonstrating a network through which Area X-projecting cells can contribute to intrinsic HVC communication.[Abstract] [Full Text] [Related] [New Search]