These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spatiotemporal changes in cytokeratin expression in the neonatal rat ovary.
    Author: Pan J, Auersperg N.
    Journal: Biochem Cell Biol; 1998; 76(1):27-35. PubMed ID: 9666303.
    Abstract:
    Ovarian granulosa cells are derived embryologically from two keratin-positive epithelia of mesodermal origin, the ovarian rete and the ovarian surface epithelium. In the rat, presumptive granulosa cells still express keratin at birth but as they acquire functions related to oocyte support and steroidogenesis in the maturing ovary they lose this epithelial differentiation marker. Using double-label immunofluorescence microscopy, we examined the distribution of keratin-expressing granulosa cells in rat ovaries on days 1-10 postpartum in relation to (i) laminin and collagen type IV in follicular basement membranes, (ii) the zona pellucida, and (iii) 3 beta-hydroxysteroid dehydrogenase activity. Keratin was present in most (pre)granulosa cells on days 1-3. As the cells became multilayered in growing follicles, keratin was retained by granulosa cells adjacent to follicular basement membranes but disappeared from cells that were displaced towards follicular centers. From day 7 on, large follicles lacked keratin altogether. Laminin was a consistent component of follicular basement membranes at all ages, while collagen IV varied and diminished in parallel with keratin. 3 beta-Hydroxysteroid dehydrogenase was demonstrable in stromal interstitial cells from day 7 on. Zona pellucida first appeared in primary follicles adjacent to keratin-positive cells and subsequently became surrounded with keratin-negative granulosa cells in growing follicles. The results suggest different roles for laminin and collagen IV in follicular basement membranes and support the hypothesis that keratin expression by granulosa cells depends on paracrine interactions with the ovarian stroma. In early growing follicles, these interactions may be interrupted by physical removal from the vicinity of the basement membranes as the granulosa cells become multilayered. In the more mature follicles, the loss of keratin from all granulosa cells suggests that the required stromal signals cease, perhaps as the perifollicular stroma differentiates into the theca.
    [Abstract] [Full Text] [Related] [New Search]