These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II.
    Author: Raben N, Nagaraju K, Lee E, Kessler P, Byrne B, Lee L, LaMarca M, King C, Ward J, Sauer B, Plotz P.
    Journal: J Biol Chem; 1998 Jul 24; 273(30):19086-92. PubMed ID: 9668092.
    Abstract:
    We have used gene targeting to create a mouse model of glycogen storage disease type II, a disease in which distinct clinical phenotypes present at different ages. As in the severe human infantile disease (Pompe Syndrome), mice homozygous for disruption of the acid alpha-glucosidase gene (6(neo)/6(neo)) lack enzyme activity and begin to accumulate glycogen in cardiac and skeletal muscle lysosomes by 3 weeks of age, with a progressive increase thereafter. By 3.5 weeks of age, these mice have markedly reduced mobility and strength. They grow normally, however, reach adulthood, remain fertile, and, as in the human adult disease, older mice accumulate glycogen in the diaphragm. By 8-9 months of age animals develop obvious muscle wasting and a weak, waddling gait. This model, therefore, recapitulates critical features of both the infantile and the adult forms of the disease at a pace suitable for the evaluation of enzyme or gene replacement. In contrast, in a second model, mutant mice with deletion of exon 6 (Delta6/Delta6), like the recently published acid alpha-glucosidase knockout with disruption of exon 13 (Bijvoet, A. G., van de Kamp, E. H., Kroos, M., Ding, J. H., Yang, B. Z., Visser, P., Bakker, C. E., Verbeet, M. P., Oostra, B. A., Reuser, A. J. J., and van der Ploeg, A. T. (1998) Hum. Mol. Genet. 7, 53-62), have unimpaired strength and mobility (up to 6.5 months of age) despite indistinguishable biochemical and pathological changes. The genetic background of the mouse strains appears to contribute to the differences among the three models.
    [Abstract] [Full Text] [Related] [New Search]