These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of the 41/43 kDa mitogen-activated protein kinase signaling pathway is required for hepatocyte growth factor-induced cell scattering. Author: Tanimura S, Chatani Y, Hoshino R, Sato M, Watanabe S, Kataoka T, Nakamura T, Kohno M. Journal: Oncogene; 1998 Jul 09; 17(1):57-65. PubMed ID: 9671314. Abstract: Hepatocyte growth factor (HGF) markedly induced the spreading, dissociation and scattering of Madin-Darby canine kidney epithelial cells (MDCK) and human stomach adenocarcinoma cells (TMK1). Scattering of MDCK and TMK1 cells was induced by 12-O-tetradecanoyl-phorbol-13-acetate (PMA) and epidermal growth factor (EGF), respectively. In all these agent-stimulated cells, rapid activation of Raf-1, MAP kinase/ERK kinase (MEK), 41/43 kDa MAP kinases and p90rsk was commonly observed. In contrast, PMA neither induced the scattering nor activation of all these kinases in TMK1 cells. Pretreatment of MDCK and TMK1 cells with 2-(2-amino-3-methoxyphenyl) choromone (AMPC), a specific inhibitor of MEK, selectively inhibited the HGF-, PMA- and EGF-stimulated activities of MEK, 41/43 kDa MAP kinases and p90rsk in a dose dependent manner. AMPC-pretreatment, however, did not affect HGF-, PMA- or EGF-induced activation of Raf-1, nor HGF-induced activation of phosphatidylinositol 3-kinase in these cells. Importantly, HGF-, PMA- and EGF-induced scattering of MDCK and TMK1 cells was inhibited at doses of AMPC similar to those that gave comparable levels of inhibition of the activities of MEK, 41/43 kDa MAP kinases and p90rsk. These results suggest that activation of the 41/43 kDa MAP kinase signaling pathway is required for the motility response of MDCK and TMK1 cells induced by agents such as HGF, PMA and EGF.[Abstract] [Full Text] [Related] [New Search]