These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract.
    Author: Miller C, Sassoon DA.
    Journal: Development; 1998 Aug; 125(16):3201-11. PubMed ID: 9671592.
    Abstract:
    The murine female reproductive tract differentiates along the anteroposterior axis during postnatal development. This process is marked by the emergence of distinct cell types in the oviduct, uterus, cervix and vagina and is dependent upon specific mesenchymal-epithelial interactions as demonstrated by earlier heterografting experiments. Members of the Wnt family of signaling molecules have been recently identified in this system and an early functional role in reproductive tract development has been demonstrated. Mice were generated using ES-mediated homologous recombination for the Wnt-7a gene (Parr, B. A. and McMahon, A. P. (1995) Nature 374, 350-353). Since Wnt-7a is expressed in the female reproductive tract, we examined the developmental consequences of lack of Wnt-7a in the female reproductive tract. We observe that the oviduct lacks a clear demarcation from the anterior uterus, and acquires several cellular and molecular characteristics of the uterine horn. The uterus acquires cellular and molecular characteristics that represent an intermediate state between normal uterus and vagina. Normal vaginas have stratified epithelium and normal uteri have simple columnar epithelium, however, mutant uteri have stratified epithelium. Additionally, Wnt-7a mutant uteri do not form glands. The changes observed in the oviduct and uterus are accompanied by a postnatal loss of hoxa-10 and hoxa-11 expression, revealing that Wnt-7a is not required for early hoxa gene expression, but is required for maintenance of expression. These clustered hox genes have been shown to play a role in anteroposterior patterning in the female reproductive tract. In addition to this global posterior shift in the female reproductive tract, we note that the uterine smooth muscle is disorganized, indicating development along the radial axis is affected. Changes in the boundaries and levels of other Wnt genes are detectable at birth, prior to changes in morphologies. These results suggest that a mechanism whereby Wnt-7a signaling from the epithelium maintains the molecular and morphological boundaries of distinct cellular populations along the anteroposterior and radial axes of the female reproductive tract.
    [Abstract] [Full Text] [Related] [New Search]