These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nucleotide excision repair proteins may be involved in the fixation of glyoxal-induced mutagenesis in Escherichia coli.
    Author: Murata-Kamiya N, Kamiya H, Kaji H, Kasai H.
    Journal: Biochem Biophys Res Commun; 1998 Jul 20; 248(2):412-7. PubMed ID: 9675151.
    Abstract:
    To investigate the influence of nucleotide excision repair (NER) on glyoxal-induced mutations, we treated wild-type and NER-deficient (uvrC) Escherichia coli strains with glyoxal, and analyzed mutations in the chromosomal lacI gene. In both strains, the cell death and the mutation frequency increased according to the dose of glyoxal added to the culture medium, and cell death was induced to a similar level in both strains. Interestingly, the frequency of glyoxal-induced mutations in the wild-type strain was higher than that in the uvrC strain. Particularly, the frequency of base-pair substitutions was 4.7-fold higher in the wild-type strain. In the wild-type strain, G:C-->T:A transversions were predominant, followed by G:C-->A:T and A:T-->T:A mutations. In the uvrC strain, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions. All the base-pair substitutions except for G:C-->A:T transitions were >4-fold higher in the wild-type strain than in the uvrC strain. These results suggest that NER may be involved in the fixation of glyoxal-induced base-pair substitutions.
    [Abstract] [Full Text] [Related] [New Search]