These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cell-free analysis of Golgi apparatus membrane traffic in rat liver. Author: Morré DJ. Journal: Histochem Cell Biol; 1998; 109(5-6):487-504. PubMed ID: 9681630. Abstract: Cell-free systems for the analysis of Golgi apparatus membrane traffic rely either on highly purified cell fractions or analysis by specific trafficking markers or both. Our work has employed a cell-free transfer system from rat liver based on purified fractions. Transfer of any constituent present in the donor fraction that can be labeled (protein, phospholipid, neutral lipid, sterol, or glycoconjugate) may be investigated in a manner not requiring a processing assay. Transition vesicles were purified and Golgi apparatus cisternae were subfractionated by means of preparative free-flow electrophoresis. Using these transition vesicles and Golgi apparatus subfractions, transfer between transitional endoplasmic reticulum and cis Golgi apparatus was investigated and the process subdivided into vesicle formation and vesicle fusion steps. In liver, vesicle formation exhibited both ATP-independent and ATP-dependent components whereas vesicle fusion was ATP-independent. The ATP-dependent component of transfer was donor and acceptor specific and appeared to be largely unidirectional, i.e., ATP-dependent retrograde (cis Golgi apparatus to transitional endoplasmic reticulum) traffic was not observed. ATP-dependent transfer in the liver system and coatomer-driven ATP-independent transfer in more refined yeast and cultured cell systems are compared and discussed in regard to the liver system. A model mechanism developed for ATP-dependent budding is proposed where a retinol-stimulated and brefeldin A-inhibited NADH protein disulfide oxidoreductase (NADH oxidase) with protein disulfide-thiol interchange activity and an ATP-requiring protein capable of driving physical membrane displacement are involved. It has been suggested that this mechanism drives both the cell enlargement and the vesicle budding that may be associated with the dynamic flow of membranes along the endoplasmic reticulum-vesicle-Golgi apparatus-plasma membrane pathway.[Abstract] [Full Text] [Related] [New Search]