These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Author: Dimroth P, Schink B. Journal: Arch Microbiol; 1998 Aug; 170(2):69-77. PubMed ID: 9683642. Abstract: Decarboxylation of dicarboxylic acids (oxalate, malonate, succinate, glutarate, and malate) can serve as the sole energy source for the growth of fermenting bacteria. Since the free energy change of a decarboxylation reaction is small (around -20 kJ per mol) and equivalent to only approximately one-third of the energy required for ATP synthesis from ADP and phosphate under physiological conditions, the decarboxylation energy cannot be conserved by substrate-level phosphorylation. It is either converted (in malonate, succinate, and glutarate fermentation) by membrane-bound primary decarboxylase sodium ion pumps into an electrochemical gradient of sodium ions across the membrane; or, alternatively, an electrochemical proton gradient can be established by the combined action of a soluble decarboxylase with a dicarboxylate/monocarboxylate antiporter (in oxalate and malate fermentation). The thus generated electrochemical Na+ or H+ gradients are then exploited for ATP synthesis by Na+- or H+-coupled F1F0 ATP synthases. This new type of energy conservation has been termed decarboxylation phosphorylation and is responsible entirely for ATP synthesis in several anaerobic bacteria.[Abstract] [Full Text] [Related] [New Search]