These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release.
    Author: Gasper MM, Blanco D, Cruz ME, Alonso MJ.
    Journal: J Control Release; 1998 Mar 02; 52(1-2):53-62. PubMed ID: 9685935.
    Abstract:
    This paper describes the preparation and characterisation of poly(lactide-co-glycolide) (PLG) nanoparticles containing the enzyme L-asparaginase. L-Asparaginase was encapsulated in PLG nanospheres using a water-in-oil-in-water solvent evaporation technique. The effect of the copolymer molecular weight and the presence of carboxyl-end groups in the copolymer chain on the physicochemical and in vitro release properties of the nanoparticles was investigated. Results indicated that size, encapsulation efficiency and in vitro release properties (enzymatic activity retention and protein quantification) of the nanoparticles were affected by the PLG molecular weight. As expected, nanoparticles made of high-molecular-weight PLG had a larger size, a higher loading and la slower release rate than those made od a low-molecular-weight PLG. Nevertheless, the most relevant factor affecting the entrapment and release of L-asparaginase from PLG nanoparticles was the presence of free carboxyl-end groups in the PLG chain. The nanoparticles made of PLG with free carboxyl-end groups had a high protein loading (4.86%, w/w) and provided a continuous delivery of the active enzyme for 20 days. However, the enzyme loading was lower (2.65%, w/v) and no active enzyme was detected in the release medium after a 14-day incubation period when nanoparticles were made of PLG with carboxyl-end groups esterified. These results give evidence of the potential of PLG nanospheres for the continuous delivery of L-asparaginase for extended periods of time and show the effect of the PLG chain end-groups in the amount and activity of the enzyme loaded into the nanospheres.
    [Abstract] [Full Text] [Related] [New Search]