These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tyrosine kinase and c-Jun NH2-terminal kinase mediate hypertrophic responses to prostaglandin F2alpha in cultured neonatal rat ventricular myocytes. Author: Adams JW, Sah VP, Henderson SA, Brown JH. Journal: Circ Res; 1998 Jul 27; 83(2):167-78. PubMed ID: 9686756. Abstract: Myocardial infarction results in focal areas of ischemia, hypoxia, necrosis, and decreased contractile function. To compensate for loss of contractile function, remaining viable myocytes undergo hypertrophic growth. Prostaglandin F2alpha (PGF2alpha), which is released from cells of the myocardium during periods of stress such as hypoxia or ischemia/reperfusion, has recently been shown to stimulate hypertrophic growth in neonatal rat ventricular myocytes. In the present study, we determine which growth-related intracellular pathways are required for PGF2alpha to induce morphological and genetic features characteristic of the hypertrophic phenotype. In cardiomyocytes, PGF2alpha increases the hydrolysis of inositol phosphates and induces the translocation of protein kinase C epsilon to the myocyte membrane, consistent with PGF2alpha receptor coupling to Gq. PGF2alpha also activates the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase pathways. Surprisingly, studies using pharmacological inhibitors and transfection of dominant-interfering proteins demonstrate that PGF2alpha-induced myocyte hypertrophy occurs independent of either PKC, p38, or ERK pathways. Additional studies demonstrate that PGF2alpha stimulates protein tyrosine phosphorylation and activates c-Jun NH2-terminal kinase and suggest that these pathways mediate hypertrophic growth in response to PGF2alpha.[Abstract] [Full Text] [Related] [New Search]