These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Brain cytokine mRNAs in anorectic rats bearing prostate adenocarcinoma tumor cells. Author: Plata-Salamán CR, Ilyin SE, Gayle D. Journal: Am J Physiol; 1998 Aug; 275(2):R566-73. PubMed ID: 9688694. Abstract: Cancer is consistently associated with anorexia. The Lobund-Wistar rat model of prostate cancer exhibits clinical manifestations (including anorexia) that resemble many aspects of the human disease. Cytokines are proposed to be involved in cancer-associated anorexia. Here we investigated mRNA profiles of feeding-modulatory cytokines and neuropeptides in specific brain regions of anorectic Lobund-Wistar rats bearing prostate adenocarcinoma tumor cells. Interleukin (IL)-1beta system components (ligand, signaling receptor, receptor accessory proteins, receptor antagonist), tumor necrosis factor-alpha, transforming growth factor-beta1, glycoprotein 130 (IL-6 receptor signal transducer), proopiomelanocortin (POMC, opioid peptide precursor), and neuropeptide Y (NPY) mRNAs were analyzed with sensitive and specific RNase protection assays. The same brain region sample was assayed for all components. The data show that early anorexia in tumor-bearing rats was associated with an upregulation of IL-1beta mRNA in the brain regions examined (cerebellum, cortex, and hypothalamus). IL-1 receptor antagonist (IL-1Ra) mRNA and IL-1 receptor type I mRNA levels were also significantly increased in the cortex and hypothalamus. All other cytokine components, POMC, or NPY mRNA levels were not significantly different between tumor-bearing and pair-fed (control) rats. IL-1beta mRNA and IL-1Ra mRNA were also significantly upregulated in the spleen of tumor-bearing rats. These data suggest that 1) IL-1beta mRNA upregulation in the brain may be relevant to the anorexia exhibited by the tumor-bearing Lobund-Wistar rat and 2) in vivo characterization of cytokine components in discrete brain regions during cancer is necessary to understand underlying molecular mechanisms responsible for cancer-associated neurological manifestations.[Abstract] [Full Text] [Related] [New Search]