These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chloride ion currents contribute functionally to norepinephrine-induced vascular contraction. Author: Lamb FS, Barna TJ. Journal: Am J Physiol; 1998 Jul; 275(1):H151-60. PubMed ID: 9688908. Abstract: Norepinephrine (NE) increases Cl- efflux from vascular smooth muscle (VSM) cells. An increase in Cl- conductance produces membrane depolarization. We hypothesized that if Cl- currents are important for agonist-induced depolarization, then interfering with cellular Cl- handling should alter contractility. Isometric contraction of rat aortic rings was studied in a bicarbonate buffer. Substitution of extracellular Cl- with 130 mM methanesulfonate (MS; 8 mM Cl-) did not cause contraction. NE- and serotonin-induced contractions were potentiated in this low-Cl- buffer, whereas responses to K+, BAY K 8644, or NE in the absence of Ca2+ were unaltered. Substitution of Cl- with I- or Br- suppressed responses to NE. Inhibition of Cl- transport with bumetanide (10(-5) M) or bicarbonate-free conditions (10 mM HEPES) inhibited NE- but not KCl-induced contraction. The Cl--channel blockers DIDS (10(-3) M), anthracene-9-carboxylic acid (10(-3) M), and niflumic acid (10(-5) M) all inhibited NE-induced contraction, whereas tamoxifen (10(-5) M) did not. Finally, disruption of sarcoplasmic reticular function with cyclopiazonic acid (10(-7) M) or ryanodine (10(-5) M) prevented the increase in the peak response to NE produced by low-Cl- buffer. We conclude that a Cl- current with a permeability sequence of I- > Br- > Cl- > MS is critical to agonist-induced contraction of VSM.[Abstract] [Full Text] [Related] [New Search]