These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin-catenin complex. Author: Zimmerhackl LB, Momm F, Wiegele G, Brandis M. Journal: Am J Physiol; 1998 Jul; 275(1):F143-53. PubMed ID: 9689016. Abstract: Cadmium toxicity to renal cells was investigated in Madin-Darby canine kidney (MDCK) and LLC-PK1 cells as models of the distal tubule/collecting duct and proximal tubule, respectively. Cells were grown on two-compartment filters and exposed to 0.1-50 microM Cd2+. In MDCK cells, Cd2+ was more toxic from the basolateral than from the apical side and dependent on the extracellular Ca2+ concentration. Toxicity was evident within 24 h, as shown by a decrease in transepithelial resistance (TER), reduced proliferation (bromodeoxyuridine incorporation), reduction in ATP concentration, and morphological changes. On confocal microscopy, E-cadherin and alpha-catenin staining patterns indicated interference with the cadherin-catenin complex. LLC-PK1 cells showed a similar toxicity pattern, which was evident at lower Cd2+ concentrations. An increase of E-cadherin and alpha-catenin molecules in the Triton X-100-insoluble fraction was detectable at high Cd2+ concentrations in LLC-PK1 cells but not in MDCK cells. Lactate dehydrogenase release indicated membrane leakage in LLC-PK1 cells. Rhodamine-phalloidin staining, a probe for F-actin filaments, demonstrated alterations of the actin cytoskeleton in both cell lines. In conclusion, cadmium caused ATP depletion and interfered with the cadherin-catenin complex and probably the tight junctions changing renal cell morphology and function.[Abstract] [Full Text] [Related] [New Search]