These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mammalian cytidine 5'-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Author: Münster AK, Eckhardt M, Potvin B, Mühlenhoff M, Stanley P, Gerardy-Schahn R. Journal: Proc Natl Acad Sci U S A; 1998 Aug 04; 95(16):9140-5. PubMed ID: 9689047. Abstract: Sialic acids of cell surface glycoproteins and glycolipids play a pivotal role in the structure and function of animal tissues. The pattern of cell surface sialylation is species- and tissue-specific, is highly regulated during embryonic development, and changes with stages of differentiation. A prerequisite for the synthesis of sialylated glycoconjugates is the activated sugar-nucleotide cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which provides a substrate for Golgi sialyltransferases. Although a mammalian enzymatic activity responsible for the synthesis of CMP-Neu5Ac has been described and the enzyme has been purified to near homogeneity, sequence information is restricted to bacterial CMP-Neu5Ac synthetases. In this paper, we describe the molecular characterization, functional expression, and subcellular localization of murine CMP-Neu5Ac synthetase. Cloning was achieved by complementation of the Chinese hamster ovary lec32 mutation that causes a deficiency in CMP-Neu5Ac synthetase activity. A murine cDNA encoding a protein of 432 amino acids rescued the lec32 mutation and also caused polysialic acid to be expressed in the capsule of the CMP-Neu5Ac synthetase negative Escherichia coli mutant EV5. Three potential nuclear localization signals were found in the murine synthetase, and immunofluorescence studies confirmed predominantly nuclear localization of an N-terminally Flag-tagged molecule. Four stretches of amino acids that occur in the N-terminal region are highly conserved in bacterial CMP-Neu5Ac synthetases, providing evidence for an ancestral relationship between the sialylation pathways of bacterial and animal cells.[Abstract] [Full Text] [Related] [New Search]