These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability. Author: Kwok SC, Tripet B, Man JH, Chana MS, Lavigne P, Mant CT, Hodges RS. Journal: Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331. Abstract: The solution to the protein folding problem lies in defining the relative energetic contributions of short-range and long-range interactions. In other words, the tendency of a stretch of amino acids to adopt a final secondary structural fold is context dependent. Our approach to this problem is to address whether an amino acid sequence, a "cassette," with a defined secondary structure in the three-dimensional structure of a native protein, can adopt a different conformation when placed into a different protein environment. Thus, we designed de novo a disulfide-bridged two-stranded alpha-helical parallel coiled coil, where each polypeptide chain consisted of 39 residues, as a "cassette holder." The 11-residue cassette would be inserted into the center of each polypeptide chain between the two nucleating alpha-helices to replace the control sequence. This Structural Cassette Mutagenesis model permits the analysis of short-range interactions within the inserted cassette as well as long-range interactions between the nucleating helices and the cassette region. The cassette holder, with a control sequence as the cassette, had a GdnHCl transition midpoint during denaturation of 5.6M. To demonstrate the feasibility of our model, an 11-residue beta-strand cassette from an immunoglobulin fold was inserted. The cassette was fully induced into the alpha-helical conformation with a [GdnHCl]1/2 value of 3.2M. To demonstrate the importance of short-range interactions (beta-sheet/alpha-helical propensities of amino acid side chains) in modulating structure and stability, a series of 1-5 threonine residues (highest beta-sheet propensity) were substituted into the solvent-exposed portions of the cassette in the alpha-helical conformation. Each successive substitution systematically decreased the stability of the coiled coil with peptide T4b (4 Thr residues) having a [GdnHCl]1/2 value of 2.2M. The single substitution of Ile in the hydrophobic core of the cassette with Ala or Thr had the most dramatic effect on protein stability (peptide 120T, [GdnHCl]1/2 value of 1.4M). Though these substitutions were able to modulate stability, they were not able to disrupt the alpha-helical conformation of the cassette, showing the importance of the nucleating alpha-helices on either side of the cassette in controlling conformation of the cassette. We have demonstrated the feasibility of our model protein to accept a beta-strand cassette. The effect of cassettes containing other beta-strands, beta-turns, loops, regions of undefined structure, and helical segments on conformation and stability of our model protein will also be determined.[Abstract] [Full Text] [Related] [New Search]