These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipase c/inositol 1,4,5-triphosphate pathway in astrocytes from the dorsal spinal cord. Author: Idestrup CP, Salter MW. Journal: Neuroscience; 1998 Oct; 86(3):913-23. PubMed ID: 9692727. Abstract: In astrocytes, raising intracellular Ca2+ concentration is a principal mechanism for transducing extracellular signals following activation of cell-surface receptors. Receptors that may be activated by purine nucleotides, P2 receptors, are known to be expressed by astrocytes from dorsal spinal cord; these astrocytes express two distinct subtypes of P2 receptor, P2Y and P2U. A main goal of the present study was to determine the intracellular signalling pathways mediating the Ca2+ responses produced by stimulating these receptors. Experiments were done using cultured astrocytes from rat dorsal spinal cord. Ca2+ responses were evoked by 2-methylthio-ATP or UTP, nucleotides previously shown to selectively activate P2Y and P2U receptors, respectively, in these cells. P2Y- and P2U-evoked Ca2+ responses were found not to depend upon extracellular Ca2+ and were blocked by thapsigargin, a Ca2+-ATPase inhibitor known to deplete inositol 1,4,5-triphosphate-sensitive Ca2+ stores. Intracellular application of the inositol 1,4,5-triphosphate-sensitive receptor antagonist, heparin, or of the G-protein inhibitor guanosine 5'-O-(2-thiodiphosphate), blocked the P2Y- and P2U-evoked Ca2+ responses. Moreover, the responses were prevented by the phospholipase C inhibitor, U-73122, but were unaffected by the inactive analogue, U-73343. These results indicate that P2Y and P2U receptors on dorsal spinal astrocytes are linked via G-protein coupling to release of intracellular Ca2+ via the phospholipase C/inositol 1,4,5-triphosphate pathway. When we assessed the releasable pools of intracellular Ca2+, by repeated agonist applications in zero extracellular Ca2+, we found that the pool accessed by activating P2U receptors was only a subpool of that accessed by activating P2Y receptors. This implies that there are separable inositol 1,4,5-triphosphate-releasable pools of Ca2+ in dorsal spinal astrocytes and that these may be differentially released by activating distinct metabotropic P2 receptors. This differential release of Ca2+ may be important for physiological as well as pathophysiological events occurring within the spinal cord.[Abstract] [Full Text] [Related] [New Search]