These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mobilization of mercury and arsenic in humans by sodium 2,3-dimercapto-1-propane sulfonate (DMPS).
    Author: Aposhian HV.
    Journal: Environ Health Perspect; 1998 Aug; 106 Suppl 4(Suppl 4):1017-25. PubMed ID: 9703487.
    Abstract:
    Sodium 2,3-dimercapto-1-propane sulfonate (DMPS, Dimaval) is a water-soluble chelating agent that can be given by mouth or systemically and has been used to treat metal intoxication since the 1960s in the former Soviet Union and since 1978 in Germany. To better approximate the body burdens of Hg and As in humans, DMPS-Hg andDMPS-As challenge tests have been developed. The tests involve collecting an overnight urine, administering 300 mg DMPS at zero time, collecting the urine from 0 to 6 hr, and determining the urinary Hg before and after DMPS is given. The challenge test, when applied to normal college student volunteers with and without amalgam restorations in their mouths, indicated that two-thirds of the Hg excreted in the urine after DMPS administration originated in their dental amalgams. In addition, there was a positive linear correlation between the amalgam score (a measure of amalgam surface) and urinary Hg after the challenge test. When the DMPS-Hg challenge test was used to study dental personnel occupationally exposed to Hg, the urinary excretion of Hg was 88, 49, and 35 times greater after DMPS administration than before administration in 10 dental technicians, 5 dentists, and 13 nondental personnel, respectively. DMPS also was used to measure the body burden of humans with a history of drinking water containing 600 microgram As/liter. DMPS administration resulted in a tripling of the monomethylarsonic acid percentage and a halving of the dimethylarsinic acid percentage as related to total urinary As. Because South American animals studied were deficient in arsenite methyltransferase, a hypothesis is presented that arsenite and arsenite methyltransferase may have had a role in the evolution of some South American animals.
    [Abstract] [Full Text] [Related] [New Search]