These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Author: Karagas MR, Tosteson TD, Blum J, Morris JS, Baron JA, Klaue B. Journal: Environ Health Perspect; 1998 Aug; 106 Suppl 4(Suppl 4):1047-50. PubMed ID: 9703491. Abstract: Ingestion of arsenic-contaminated drinking water is associated with an increased risk of several cancers, including skin and bladder malignancies; but it is not yet clear whether such adverse effects are present at levels to which the U.S. population is exposed. In New Hampshire, detectable levels of arsenic have been reported in drinking water supplies throughout the state. Therefore, we have begun a population-based epidemiologic case-control study in which residents of New Hampshire diagnosed with primary squamous cell (n = 900) and basal cell (n = 1200) skin cancers are being selected from a special statewide skin cancer incidence survey; patients diagnosed with primary bladder cancers (n = 450) are being identified through the New Hampshire State Cancer Registry. Exposure histories of these patients will be compared to a control group of individuals randomly selected from population lists (n = 1200). Along with a detailed personal interview, arsenic and other trace elements are being measured in toenail clipping samples using instrumental neutron activation analysis. Household water samples are being tested on selected participants using a hydride generation technique with high-resolution inductively coupled plasma mass spectrometry. In the first 793 households tested arsenic concentrations ranged from undetectable (0.01 microgram/l) to 180 microgram/l. Over 10% of the private wells contained levels above 10 microgram/l and 2.5% were above 50 microgram/l. Based on our projected sample size, we expect at least 80% power to detect a 2-fold risk of basal cell or squamous cell skin cancer or bladder cancer among individuals with the highest 5% toenail concentrations of arsenic.[Abstract] [Full Text] [Related] [New Search]