These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimal preload adjustment of maximal ventricular power index varies with cardiac chamber size.
    Author: Nakayama M, Chen CH, Nevo E, Fetics B, Wong E, Kass DA.
    Journal: Am Heart J; 1998 Aug; 136(2):281-8. PubMed ID: 9704691.
    Abstract:
    BACKGROUND: Maximal left ventricular power (PWRmax) can index contractile function and reserve; however, its marked preload dependence mandates load adjustment to yield a more cardiac-specific measurement. Prior studies have used varying methods, but supporting data have generally been lacking. We hypothesized that the optimal approach for preload adjustment varies with ventricular volume (particularly end-systolic volume) and is significantly different for dilated hearts with reduced left ventricular function compared with small to normal-sized hearts with normal systolic function. METHODS: Left ventricular pressure-volume relations were measured by the conductance catheter method in 36 patients, with preload altered by inferior vena cava obstruction. Patients with normal ventricles (n = 16), hypertrophy or mitral stenosis (n = 12), and dilated cardiomyopathy (n = 8) were divided into three groups based on resting end-diastolic volume: group 1, 66.3 +/- 12; group 2, 118.1 +/- 20; and group 3, 218.2 +/- 48 ml. PWRmax was the maximal product of simultaneous left ventricular pressure and rate of volume change. PWRmax end-diastolic volume (EDV) data were fit to a power function, PWRmax = alphaEDVbeta (where alpha is a scaling factor and beta is the power coefficient), and the preload sensitivity of beta and PWRmax/EDVbeta ratios (beta = 1, 2, or best fit) were compared. RESULTS: Beta varied directly with chamber size: 0 = 0.004 x (EDV + 0.56), r = 0.65, p < 0.0001. However, it was equally well approximated by 1.0 in groups 1 and 2 (ESV <75 ml, EF >40%), whereas beta = 2 was more appropriate in group 3. CONCLUSION: PWRmax/EDV provides adequate preload independence in all but dilated hearts with reduced LV function, whereas PWRmax/EDV2 is required in the latter. These data should help clinical application of a noninvasive PWRmax index for assessing chamber contractility and contractile reserve in human beings.
    [Abstract] [Full Text] [Related] [New Search]