These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression of CYP1A1 transcription by H2O2 is mediated by xenobiotic-response element.
    Author: Xu C, Pasco DS.
    Journal: Arch Biochem Biophys; 1998 Aug 15; 356(2):142-50. PubMed ID: 9705204.
    Abstract:
    We have previously demonstrated that H2O2 downregulates CYP1A1 and CYP1A2 transcription in isolated rat hepatocytes (C. W. Barker, et al., 1994, J. Biol. Chem. 269, 3985-3990). In the present study, induction of chloramphenicol acetyltransferase (CAT) expression driven by 3.1 kb of rat CYP1A1 upstream regulatory sequences was suppressed by 56% in Hepa-1 cells treated with H2O2. Similarly, H2O2 inhibited CAT expression from vectors containing two copies of either xenobiotic-response element (XRE) 1 or XRE2. H2O2 did not inhibit basal CAT expression in cells that were not treated with the inducer beta-napthoflavone. Electrophoretic mobility shift assays demonstrated that the suppression of XRE-dependent transcription by H2O2 was not due to changes in nuclear aryl hydrocarbon (Ah) receptor DNA binding activity. Several types of experiments indicated that modulation of XRE enhancer strength by various means could modify H2O2-dependent suppression of CAT expression. Conditions that increased the transactivation potential of the Ah receptor (increase in XRE copy number or shortening of the distance between XREs and the minimal CYP1A1 promoter) attenuated the action of H2O2, while conditions that reduced XRE-mediated transactivation potential (decrease in XRE copy number, increase of the distance between the XRE and the promoter, or reduction of the number of bound Ah receptors by lowering the concentration of inducer) potentiated the inhibitory action of H2O2.
    [Abstract] [Full Text] [Related] [New Search]