These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thyroid hormone response elements differentially modulate the interactions of thyroid hormone receptors with two receptor binding domains in the steroid receptor coactivator-1.
    Author: Takeshita A, Yen PM, Ikeda M, Cardona GR, Liu Y, Koibuchi N, Norwitz ER, Chin WW.
    Journal: J Biol Chem; 1998 Aug 21; 273(34):21554-62. PubMed ID: 9705285.
    Abstract:
    Ligand-dependent transcriptional activation by nuclear receptors is mediated by interactions with coactivators. Recently, a consensus interaction motif (LXXLL) has been identified in a number of coactivators such as steroid receptor coactivator-1 (SRC-1). SRC-1 contains three such motifs in the central (nuclear receptor binding domain-1, NBD-1) and a single one in the C-terminal (NBD-2) regions. To define the nature and role of the two NBDs in SRC-1, interaction studies between the two NBDs and thyroid hormone receptor (TR) were performed. Although NBD-1 and NBD-2 showed similar ligand- and AF-2-dependent interactions with TR in solution, these two NBDs possessed distinct interaction properties with TR when TR is bound to a thyroid hormone-response element (TRE). Both in vitro and in vivo interaction studies demonstrate that NBD-1, but not NBD-2, exhibits ligand-dependent interaction with TR in the presence of TREs. In addition, a natural isoform of SRC-1, SRC-1E, which lacks NBD-2, preserved TR as well as progesterone receptor-mediated coactivator function on reporter gene expression. Finally, we found that NBD-1 failed to interact with a TR and retinoid X receptor heterodimer complex on a transcriptionally inactive direct repeat +4 TRE in electrophoretic mobility shift assays. These observations indicate that DNA-induced, as well as ligand-induced, conformational change(s) of TR may influence the nature of its binding to SRC-1, and that the two NBDs of SRC-1 may play different roles to regulate ligand-dependent transactivation of TRs.
    [Abstract] [Full Text] [Related] [New Search]